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The Assumption of Joint Gaussian Velocities 
as Applied to the Pressure Structure Function 

Reginald J. Hill 

ABSTRACT. The 1951 theory of the pressure structure function used the assumption of joint Gaussian 
velocities to obtain tracta~le results. That theory has recently been replaced by a new theory that does not 
use this assumption. The relationships between formulas from the two theories are given. It is shown that 
combining the new theory with the joint Gaussian assumption (JGA) produces the 1951 theory. Formulas 
for the pressure structure function and the pressure-gradient correlation are given, as are asymptotic formulas 
for the inertial and dissipation ranges. The values of constants and parameters in the new theory are 
evaluated using the JGA. The incompatibility of intermittency with the JGA causes the 1951 theory to have 
an opposite intennittency correction to inertial-range exponents as compared with the new theory. 

1. INTRODUCTION 

A new relationship between the pressure structure function D P ( r) and the fourth-order 
velocity structure function Duk/ 1) was derived by Hill (1993) and Hill and Wilczak (1995), 
where the separation vector between two points is denoted by r, and r = I r I. The only 
assumptions they used are incompressibility, local isotropy, and the Navier-Stokes equation. 
Previously, Obukhov (1949) and Obukhov and Yaglom (1951) obtained a relationship 
between Dp(r) and the second-order velocity structure function Du( r) by use of the 
additional assumption that velocity derivatives at different positions have a joint Gaussian 
probability density function (PDF). Yaglom (1949) used Obukhov's (1949) theory to obtain 
the mean-squared pressure gradient. Obukhov and Yaglom (1951) derived the pressure 
gradient correlation. The assumption that velocities at different positions have a joint 
Gaussian PDF was used by Batchelor (1951) to relate the fourth-order velocity correlation 
R .. k

1
(1) to D .. ( F) and thereby relate Dp(r) to D .. ( F). We clarify here the relationship 

lj l) l) 

between the 1951 theory and the theories of Hill (1993) and Hill and Wilczak (1995). 

The limits of validity of the joint Gaussian assumption (JGA) as applied to Dp(r) 
need to be established, as well as, on the basis of the JGA, the numerical values of the 
constants introduced by Hill (1993). The data by George et al. (1984) suggest that the JGA 
gives a good estimate (within a factor of 2) of Dp(r) in the inertial range; the difficulty of 
making inertial-range pressure measurements continues to prevent a detailed investigation. 
However, the new theory allows one to compare the predictions of the JGA with those of the 
new theory from measurements of the velocity vector; pressure measurements are not needed 
for this purpose. Specifically, Du( 1) and D1jkt( 1) must be measured simultaneously, 
preferably for all relevant spacings r. We present results from the JGA that are comparable 
to results of the new theory. These results can be the basis of an experimental investigation. 
We expect the JGA-based theory by Batchelor (1951) and Obukhov and Yag1om (1951) to be 
less accurate for decreasing r/L, where L is a scale of the energy-containing range. Also, for 
r within the inertial range, smaller values of r/L are attainable for greater Reynolds numbers. 



That velocity differences are non-Gaussian is characteristic of intermittency. However, 
the JGA formulas can include an intermittency effect simply by substituting the form of 
Du( f) that includes the intermittency correction, and hence the JGA formulas can contain 
the intermittency exponent "· In a sense, the best available formulas for D .. ( f) should be ,.. u 
used in the JGA formulas. On the other hand, setting 11 = 0 is more consistent with the JGA. 
We use equality (=) to indicate that a JGA formula includes the possibility that 11 * 0, and we 
use ~ when a formula is simplified to the case 11 = 0. 

Assumptions needed for our results are obvious from our notation. Definitions need 
no assumptions and are distinguished by use of the identity symbol (=) rather than equality 
(=). If the vector separation r appears on the right side of an equation, then local 
homogeneity is assumed. If the spacing r, or wave number k, or wave vector component k 1 

appears on the right side of an equation, then local isotropy is assumed. If these rules are 
violated, then we specifically state the assumption, e.g., use of homogeneity as distinguished 
from local homogeneity or use of isotropy as distinguished from local isotropy. 

2. GENERAL FORMULAS FROM THE JOINT GAUSSIAN ASSUMPTION 

The symbols u;, P, and p denote velocity component, pressure, and density, 
respectively. Primed and unprimed quantities are taken at the distinct spatial points x' and 
x, and the separation vector between these points is denoted by r, which has magnitude r. 
We use the convention that summation is implied by repeated Roman indices but not by 
repeated Greek indices; angle brackets denote averaging; subscripts following a vertical bar 
denote differentiation. Following the notation by Hill (1993), a vertical bar on the outside of 
an average denotes differentiation with respect to the components of r, whereas a vertical bar 
with subscripts within an average denotes differentiation with respect to components of x if 
the quantity being differentiated is unprimed and with respect to components of x' if the 
quantity is primed. 

We define the quantities 

where we use isotropy to simplify the relationship of Du( f) to the velocity correlation 
R ;/ f) , which is, in turn, defined by 
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and the velocity covariance is 

Further definitions are 

(I) 

(2a) 

(2b) 

(2c) 

where (2b) is derived by Hill and Wilczak (1995) on the basis of local homogeneity and (2c) 
requires homogeneity, and 

_I ((P- P')') 
p' 

' 00 

= _I_ J (y 4 - 3ry 3 + 3r 2y 2) Q(y) dy + ~ J y Q(y) dy. 
3r 0 3 , (3) 

The pressure-gradient correlation is 

I 
= _ DP(r)1 ... 2 '1 

The mean-squared pressure gradient is 

3 



The incompressibility condition gives 

(4a) 

(4b) 

where ( 4a) requires local homogeneity and ( 4b) requires homogeneity. 

Applying the JGA to (I) and simplifying using isotropy gives (Hill, 1993) 

(Sa) 

(Sb) 

We use superscript JG to denote that the formula for a quantity derives from the JGA. The 
formula (Sa) was used by Batchelor (19S1), but it obscures the nature of the approximation, 
whereas (Sb) is revealing. Taking the fourth-order divergence of (Sb), we see that the first 
term in (Sb) vanishes because it is constant and the second term vanishes because of 
incompressibility (4b), and therefore only the last term in (Sb) contributes to v;G(r) as given 
in (3). As r!L decreases in the inertial range, the last term in (Sb) is smaller than the second 
term by a factor of the order (r!L) 213 and smaller than the first term by a factor of the order 
(r!L) 413

• Thus, the last term in (Sb), which is the only term contributing to DP(r), is 
asymptotically much smaller than the other terms in (Sb). By asymptotic, we mean that 
r/L approaches zero for some r within the inertial range; this requires asymptotically large 
Reynolds numbers. We see that it is really the combination of the JGA and incompressibility 
that reduces the large and extraneous values of RUkl( f) to a tractable result. 

It seems that the JGA is inaccurate for the purpose of obtaining DP(r) from 
R

11
k

1
( 1) because we require the JGA to be so accurate that the last and asymptotically 

smallest term in (Sb) is accurate. We now show that this is not a valid criticism of the JGA. 
As shown by Hill (1993) and Hill and Wilczak (199S), Dp(r) can be obtained using (2b) and 
(3); that is, DUkt( f) is the appropriate statistic, and 

(6) 

4 



There are no asymptotically very large terms in (6) that cancel when the fourth-order 
divergence is performed. Taking the fourth-order divergence of either (5b) or (6) and using 
incompressibility ( 4a,b ), and then substituting the result in (2b) and (2c) gives 

Q'
0

(r) = R~~~ ( r)lijkt = ~ v;j~t(f)lijkt = ~ D,/ r)lkt Dkt( r)IU · 

Thus, (5b) gives the same Q'G(r) as does (6), and (5b) therefore produces the same v:a(r) 
from (3) as does (6). The plausibility of applying the JGA to Dp(r) requires that (6) be 
accurate; (5b) need not be accurate on the order of its asymptotically smallest term. Under 
the JGA, the pressure structure function and all related quantities (i.e., mean-squared pressure 
gradient, pressure-gradient correlation, asymptotic formulas) are obtained by substituting (6) 
into the formulas by Hill (1993) and Hill and Wilczak (1995). 

We now use the preferred Cartesian coordinate system having its 1-axis along the 
separation vector r. Subscripts a and ~ can take on values 1, 2, or 3, but the subscripts lc 
and y are limited to 2 and 3. In the preferred coordinate system, the locally isotropic tensors 
Du(r) have the nonzero components D 11 (r) and D)J.(r). Likewise, Au(r) has nonzero 
components A 11 (r) and A)J.(r), and Dijkt(r) has nonzero components of the form Daa~~(r); 
the special case a=~ gives the components D (r). From (6), the components of 

JG aaaa 
Dukt ( f') that are nonzero under local isotropy are related to second-order structure-function 
components by 

where 

= !3' 
1 ' 

for a=~ , 

for a ,r. ~ . 

Under local isotropy and with use of the preferred coordinate system, the incompressibility 
condition ( 4a) simplifies to 

(I) 2 [ l D 11 (r)-- D)J.(r)-D
11

(r) =0. 
r 

The superscript in parentheses indicates the order of differentiation with respect to r. 
A combination of components of Duk/ f') that occurs frequently in formulas by Hill and 
Wilczak (1995) is 

5 

(7) 

(8) 



Substituting (7) into (9) gives 

A~c(r) = 3 {[D 11 (rW + [D;;.(r)j 2
- 2 D 11 (r)Dr/r)} 

= 3 [D;;.(r)- D11 (r)j 2 = ! r 2 [D\~l(r)r, 

where the last formula follows from incompressibility (8). 

Substituting (7) and (8) in the formula for Q(r) given by Hill (1993) and Hill and 
Wilczak (1995), we obtain 

JO (I) (2) 3 [ (I) ]2 +- D 11 (r) D 11 (r) +- D 11 (r) . 
r r2 

(9) 

(10) 

(II) 

This is the same as Batchelor's (1951) equation (5.3), which serves as a check on the 
derivation of Q(r) by Hill (1993). We can obtain D~c(r) by substituting (II) in (3) and 
integrating by parts. However, it is easier to obtain the formula for n;c(r) by substituting 
(7) in the formula for Dp(r) in Hill (1993) and Hill and Wilczak (1995), yielding 

00 

n;G(r) = - [Dll(r)] 2 + ~ r 2 J y- 3 A~G(y)dy 
,. 

' 
+ 4 J y- 1 

{ [D;;.(YW- D 11 (y) Dr/Y)} dy. (12) 
0 

Using (8) in (12) gives 

' 
Dtc(r) = Jy[D\?(y)rdy+ r 2 Jy- 1 [D\?(y)rdy. (13) 

0 ' 

It is easy to show that (13) is the same as Batchelor's (1951) equation (6.4) with a correction 
of the sign in (6.4). This serves as a check on the integration by parts that was performed by 
Hill (1993) to derive DP(r). Obukhov and Yaglom (1951) gave a more complex equation 
than (13) because they did not simplify their result using integration by parts. Similarly, 

6 



substituting (7) in the formula by Hill (1993) and Hill and Wilczak (1995) for the spectrum 
from data along a line, we obtain 

8 
31t 

(14) 

where k1 is the component of the wave vector along tbe !-axis. Under the JGA, the formula 
for the mean-squared pressure gradient by Hill (1993) and Hill and Wilczak (1995) becomes 

00 00 

XJG = 4 J r- 3 A~G(r) dr = 3 J r- 1 [Di'/(r) r dr' (15) 

0 0 

which is the same as Batchelor's (1951) equation (5.7). In the JGA, the pressure-gradient 
correlation is 

00 

Ai7Cr) = Jy-'[v;:>cy)r dy (16a) 

' 
JG JG [ (I) ]

2 

Au (r) = A).). (r) - D" (r) . (16b) 

The result (16a,b) follows from use of (7) and (8) in the formulas given by Hill (1993) or 
Hill and Wilczak (1995) for A).).(r) and A"(r). Formulas (16a,b) are much simpler than the 
corresponding formulas by Obukhov and Yaglom (1951) because Obukhov and Yaglom did 
not simplify their results using integration by parts. 

3. ASYMPTOTIC FORMULAS FOR D1/r) AND D~~/f') 

In this section, we state the asymptotic formulas for the inertial and viscous ranges 
of D aa ( r) and use these formulas to determine the corresponding asymptotic formulas for 
D ~~~~ ( r) . This allows us to give tbe JGA predictions for numerical values of the universal 
constants defined by Hill (1993). These results are used in Sec. 4 to determine asymptotic 
formulas for D ;G ( r) and related quantities. 

For the inertial range, we have 

= C e213 r' 
a ' 

(17) 
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where 

2 f.! g =- +-
3 9 

(18) 

and e is the energy dissipation rate. Of course, Kolmogorov constants Ca have units of length 
to the -f.l/9 power (if f.! *- 0) and a dependence on turbulence macrostructure; they are related 
by substitution of (17) in (8) to obtain 

(19) 

Recall.that we use ~ to mean that the formula is simplified to the case f.! = 0. Yaglom (1981) 
reviewed values of C1 and recommended C1 = 2. Values between 2.1 and 2.5 were recently 
obtained by Praskovsky and Oncley (1994). 

The viscous-range formula is 

D (r) = d r 2 
a.a a ' 

where 

Substituting (20) in (8) gives 

The inner scales ~a are defined by equating the inertial- and viscous-range formulas for 
D aa ( r), namely, (17) and (20), at r = ~~, which gives 

8 

(20) 

(21) 

(22) 

(23) 



Thus, using (19), (22), and (23), we have 

= [c). :2]11(2- •> = 
C1 d). [ 

1 ( g)] 11(2- g) -- 1 +- - 0.74 
2 2 

(24a) 

( 
2 )3/4 

~ 3 ~ 0.74. (24b) 

Numerical values such as (24a) use ll = 0.25,. as recommended by Sreenivasan and Kailasnath 
(1993); of course, (24b) uses ll = 0. Also, from (23), 

where vis kinematic viscosity, T] is the Kolmogorov microscale, and we used e = 15vd1• 

We need a specific definition of the scale L of the energy-containing range. 
Therefore, we define the scale L to be the spacing at which the inertial-range formula for 
D 11 (r) equals D11 (oo); that is, 

Then, for r in the inertial range, 

For the inertial range of D aa~~ ( r) , Hill (1993) gave 

where 

q=~-211_ 
3 9 

9 

(25) 

(26) 

(27). 

(28) 



Substituting (17) in (7) gives 

D IG ( ) _ A C c 4/3 2g aappr -uap ape r. 

Comparing (29) with (18) and (27) gives the JGA correspondence 

and 
4 2u 

qlG = 2g = _ + _r . 
3 9 

(29) 

(30) 

(31) 

The last terms in (28) and (31) have opposite signs. Therefore, the dependence on J.l of 
D~~pp(r) and D/,c(r) is opposite to the dependence on J.l of Daapp(r) and DP(r). Use of the 
JGA in combination with the intermittency-theory (and, presumably, most accurate) formula 
for D .. ( f) causes less accurate pressure statistics than does the combination of the JGA and u . 
the classic theory of Dii(1) given by Kolmogorov (1941). 

We define the flatness factor as 

Following the definition Hap= CaP /C11 by Hill (1993), we have from (30), 

C Jc;cJc A c I cz = ap II = L>ap aCp 3 I • 

Using (19), we have 

and 

H JG-
1J,. -

10 

(32a) 

(32b) 

(33) 

(34a) 

(34b) 



For the viscous range of D ··~~ ( r), the formula is 

where 

Substituting (20) in (7) gives 

so 

The ratio of derivatives in (36) is defined by Hill (1993) as A.p = d0Pid11 ; in the JGA, 
we have 

Thus, from (22), 

and 

JG d 2 AI), = l./3d1 = -. 
3 

The derivative kurtosis is defined by 

11 

(35) 

(36) 

(37) 

(38) 

(39) 

(40a) 

(40b) 

(41) 



Hill (1993) defined the universal constant hap by 

h = A <2-qlt<4-ql H 21(4-q) 
ap- ap ap 

This quantity hap appears in simplified formulas for the mean-squared pressure gradient X· 
Using (3 1), we have the JGA result, 

h
JG _ JG(I-g)/(2-g) JGI/(2-g) 

ap - Aap Hap 
(42) 

From (42), we obtain 

h JG 
ll ~ (43a) 

and 

JG (2 Jl/4 (4 J3/4 h fl. ~ 3 9 = 0.492 . (43b) 

The definition of the inner scale ~ap of D aapp ( r) is obtained by equating (27) and (35) 
at r = ~ap· Either from this definition of ~ap or by equating (29) and (37) at r = ~ ~~, 
we have 

~ JG = (c c 413/d d )11<4-2g) 
ap ape/ap 

= (~ ~ )1/2 . a p , 

for instance, ~ i7 = ~ 1 . From (24a,b) and (44), we have 

and 

nlG 
• 1). 

~JG 
II 

~ 
= ....?:. ~ 0.74 

~I 

12 

(44) 

(45a) 

(45b) 



The quantity Q (0) is important for consideration of the pressure-gradient correlation 
and the transition between inertial and viscous ranges of D p( r). Hill ( 1993) defined 

(46a) 

such that Q (0) = 60 hQ dw In the JGA, we have 

(46b) 

4 I 
= 1+--2=-, 

3 3 
(46c) 

where (46c) follows from (46b) by substituting (40a,b). That is, in the JGA we have 

(47) 

4. ASYMPTOTIC FORMULAS FOR Df,a(r) AND RELATED QUANTITIES 

Next, we use the definitions and numerical constants in Sec. 3 to investigate 
asymptotic formulas for D P ( r), x. Au ( 1), and the relevant length scales of transition 
between asymptotic ranges. The dissipation-range formula for D ;a ( r) is obtained by power 
series expansion of (13), yielding 

I JG 2 d2 4 =-xr- 1 r+ .... 
3 

(48a) 

(48b) 

where we used (21) and (47). The form (48b) shows that the dissipation-range formula for 
Df,G ( r) also follows from the analogous formula for D P ( r) given by Hill (1993) and Hill 
and Wilczak (1995) with X and Q(O) replaced by X1G and Q1G(O). 

13 



For the inertial range of n;0 (r), we use (17) in (12), yielding 

D~0 (r) ={gO+ g) [D11(r)j 2 + 2 [DM(rW- 2(1 + g)D11 (r) Drt(r)}/ g(l- g) (49a) 

~ 5 [D
11

(r)j 2 + 9 [DM(r)j 2
- 15D

11
(r) D

1
yCr) (49b) 

~ [D
11 

(r)F. (49c) 

Of course, ( 49b) follows from ( 49a) with 11 = 0; ( 49c) is obtained from ( 49b) by using local 
isotropy and incompressibility [i.e., using (17) and (19)]. Obukhov (1949), Obukhov and 
Yaglom (1951), and Batchelor (1951) obtained (49c) directly from their versions of (13). 

In the formulation by Hill (1993), one cannot pass to a single term as in (49c); 
he therefore defined the universal constani H P such that 

where r is in the inertial range. From (29) and (49a,b), we have the JGA corresponding 
constant 

(50) 

H~0 = [g(I+g)+2H(f-6(I+g)H:n/3g(I-g) = g/6(1-g) (Sia) 

~ ~ + 3 H;~- 15 H 10 (Sib) 
3 - ~ 

5 i6 20 i 
~_+_- ~ (Sic) 

3 3 3 3 

In passing from (Sib) to (Sic), we use (34a,b). Of course, (5ia-c) are just the formulas 
(49a-c) after division by n:~ 1 (r) = 3 [D11 (r)] 2

, as required by the definition of HP in (50). 

The inertial range of the spectrum '¥~0(k 1 ) can be obtained from (14). However, it is 
easier to apply the JGA to the corresponding inertial-range formula for 'f'P (k 

1
) given by Hill 

(1993) and Hill and Wilczak (1995). For simplicity, we take C
1 
= 2 and g = 2/3 to obtain 

(52) 

George et a!. (1984) compared measurements of pressure spectra with predictions from the 
JGA. In the inertial range, their measured spectrum is about twice the JGA prediction. 

i4 



The formula for mean-squared pressure gradient X by Hill (1993) and Hill and 
Wilczak (1995) depends on A

0
(r) [defined in (9)], which has three terms arising from the 

three components D1111 (r), DWJ.(r), and D 11rt(r); they express X in the form 

where 

~ 

X= 4Hx J r-3 D1111 (r)dr, 
0 

H = 
X ~ 

J r-3 DIIII(r) dr 
0 

By applying the JGA to (53) and (54) or by using (10) and (15), we have 

~ 

X1G = 12H~G J r- 3 [D11(r)] 2 dr, 
0 

with 
~ 

J r-3 {[D11(r)] 2 
+ [DuCrl] 2

- 2D11 (r) D
11

(r)} dr 
0 

~ 

J r- 3 [D11 (r)] 2 dr 
0 

Substituting (10) in (56a) gives 

~ 

I J r-! [v\:)(r)r dr 
4 HJG = 0 

X 
~ 

J r-3 [D11 (r)] 2 dr 
0 

15 

(53) 

(54) 

(55) 

(56a) 

(56b) 



Batchelor (1951) defined the pressure length scale l..p from 

,2 2/ 2 2/ 
fl.p = cr 11 <Pp > = 3 cr 11 X, 

from which we have the JGA version 

'JG2- 3 2 I JG 
ll.p - cru X • 

First, we consider the limit of low Reynolds numbers. In this case, we can 
approximate (c.f., Fig. 5.2 by Batchelor, 1956) R11 (r) - cr

11 
exp (- r 2 /2 t..i) and, 

hence, D 11 (r) = 2cr11 [1- exp(-r 2/2A.i)L where A.ris Taylor's length scale given from 
A.~ = cr

11 
I d

1
• The integrals in (56b) can be performed by elementary methods in this case, 

yielding 

H~G = (4 In 2r 1 = 0.361 . 

From (55), we obtain in the limit of very low Reynolds numbers 

JG - 6 2 ' -2 - 6 d X - <Jull.r - crll I , 

and, therefore, 

= 2' 

which is the same value as obtained by Uberoi (1954). 

For the case of high Reynolds numbers, we closely follow the development of Hill 
(1993). We next examine whether or not the JGA predicts close cancellation of the three 
terms in H:c, and thereby whether or not Hx is likely to be difficult to measure. To establish 
a value for H~G for large Reynolds numbers, we define N~~ such that 

00 

N~~ - J r~~ 1\a(r,,) Dpp(rp) drap, (57) 

0 

16 



In the inertial and viscous ranges, the asymptotic formulas for J5 aa ( r a) are r a• and 
respectively. Using (57), we find the integrals that appear in (56a) are 

-
Jr-3 D (r)D (r) dr = C C g 413 (~ ~ )•- 1 N 10 

aa pp ap aP ap· 
0 

We estimate N~g by using the ad hoc formula 

- 2 2 D (r ) = r (I + r )<•-2>12 
nn a a n ' 

(58) 

(59) 

which interpolates between the inertial- and viscous-range asymptotes. Evaluating (57) by use 
of (59) gives 

3 
for a = ~, 2' (60) 

NJG 
~ ap 

3 
-- 0.01, for a*~. 
2 

Substituting (58) in (56a) and using (23), (33), (39), and (42), we have 

HJG = I + JG hJG- 6 JG hJG x mu u m ty Iy ' 
(61) 

where the m ~~ are defined by 

10 10 10 !I , for a = ~ , 
map = Nap/Nu = 

I - 0.0066 , for a * ~ , 
and (60) is used to obtain the numerical values of m~~· Hill (1993) and Hill and Wilczak 
(1995) showed that for the new theory the map are expected to be very close to unity because 
they depend only on the relative shapes of the viscous- to inertial-range transition of 
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D aa~~ ( r). We adopt the value m ~~ = I for all a and ~ because the deviation from unity 
may be less than errors from (59). Using the values from (43a,b) in (61), we obtain 

H~c ~ I + 2.18 - 2.95 
(62) 

~ 0.23. 

This result is the same to two decimal places whether we take 11 = 0 or 11 = 0.25. Thus H~c 
is only 8% of the largest magnitude term in (62). The near cancellation of the three terms in 
(62) implies near cancellation of the three terms in (56a). We therefore expect that Hx is 
difficult to measure. 

For large Reynolds numbers, we can now estimate the mean-squared pressure gradient 
X1c in the JGA. From (55), (56a), and (58), we have 

(63a) 

(63b) 

The corresponding formula for X by Hill (1993) and Hill and Wilczak (1995) also gives (63a) 
if the JGA is applied to every factor in their formula. Yaglom (1949) also obtained (63b). 
Batchelor (1951) obtained (63b) with a somewhat different estimate for the coefficient. 

Batchelor ( 1951) defined the pressure inner scale ~P as the spacing at which the 
inertial-range and viscous-range asymptotic formulas for DP(r) are equal. The relationship 
given by Hill and Wilczak (1995) of ~P to ~ 11 becomes, in the JGA, 

,JG -
<p -

[ 

JG ]11(2 -2gl 
3Hp JG 

~II = 
4N 1G H 1G 

II X 

~ 0.63 ~I . 

JG JG 6 From (25), (44), and (45a), we have ~P "' ~M = ~~. ~ 9. '11· Therefore, in the JGA the 

(64a) 

(64b) 

pressure inner scale is commensurate with the inner scales of the second-order and fourth
order velocity structure functions. 

The initial decrease of the pressure-gradient correlation is described by the scale "-a· 

Specifically, Hill (1993) and Hill and Wilczak (1995) gave 
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2A. 2 
a + ···} 

where, using definitions (36) and ( 46a), 

and A..,_= .j3A.
1
• In the JGA, we use (38), (46c), and (63a,b) to obtain for large 

Reynolds numbers 

'JG 
/1,1 = 0.34 ~I= 4.4T] . (65) 

By using (64b) in the inertial-range formulas for Aaa(r) as given by Hill (1993) and Hill and 
Wilczak (1995), we obtain 

(66) 

and Ai7(r) ~ AJ,f(r)/3. Hill and Wilczak (1995) estimated that if ~pllc1 < 2.7, then Au(r) 
has negative values somewhere between r = A.1 and the inertial range. From (64a,b) and (65), 
we see that ~~Git.;a < 2.2; thus we expect that A;~(r) does have negative values, as 
obtained by Obukhov and Yaglom (1951). However, whether or not the exact function 
A

11 
(r) has negative values remains unknown. 

5. SUMMARY AND CONCLUSIONS 

A detailed examination of the application of the assumption of joint Gaussian 
velocities to the pressure structure function Dp(r) is given. Hill (1993) and Hill and Wilczak 
(1995) derived Dp(r) without use of this assumption. Applying the JGA to the more exact 
formulas by Hill (1993) and Hill and Wilczak (1995) gives the same formulas for Q1G(r), 
v:a(r), the inertial range of v:a(r), and X1

G as are given by Batchelor (1951) and Obukhov 
and Yaglom (1951), thereby validating the results by Hill (1993) and Hill and Wilczak 
(1995). Simpler formulas are obtained for the pressure-gradient correlation than those given 
by Obukhov and Yaglom (1951). 

The JGA gives specific predictions for the mean-squared pressure gradient (63b), the 
dissipation range of the pressure structure function ( 48a), and the inertial ranges of both the 
pressure structure function (49a-c) and the pressure-gradient correlation (66). 
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The JGA predicts values of constants and parameters that are defined by Hill (1993). 
Specifically, the ratio of components of the fourth-order velocity structure function Daapp(r) 
in the inertial range are Hi:} - 16/9 and Hi~ - 4/9 and in the dissipation range are 
A;:} = 4 and A;~ = 2/3; the constant h ~a = 113. These values give H~0 - 113 and, for high 
Reynolds numbers, H~0 - 0.23, which are respectively 5% and 8% of the largest term in 
(51 c) and (62). This close cancellation of terms suggests that the constants HP and H 
(without the JGA) will be difficult to measure. For very low Reynolds numbers, x 

JG Hx = 0.361. 

The inner scales of the second-order velocity structure function and the JGA 
predictions for inner scales of fourth-order velocity structure functions and the pressure 
structure function are found to have similar values, and the correlation scales 1..~0 of the 
pressure-gradient correlation are, of course, smaller; specifically, ~P - ~. = 0.74 ~ 1 = 
0.74 ~;~ = ~;:} = /0.74 ~;~ = 2.2 A.;.= 3.8 \. The accuracy of specific predictions of the 
JGA can be tested using measurements of the velocity vector; pressure measurements are not 
needed for locally isotropic turbulence in incompressible fluid. 

When the intermittency parameter 1.1 is included in inertial-range exponents, the 
JGA gives q10 = (4/3) + (21.119) for the power-law exponent of the pressure structure function 
as well as for components of the fourth-order velocity structure function. On the other hand, 
the more exact theory gives q = (4/3) - (21.119). The difference, q10

- q = 41.119, emphasizes 
that the JGA is incompatible with intermittency. Use of the JGA in combination with the 
intermittency-theory (and, presumably, most accurate) formula for Dii( f) causes less accurate 
pressure statistics than does the combination of the JGA and the classic theory of Dii( 1) 
given by Kolmogorov (1941 ). The simpler case of 1.1 = 0 is therefore preferred in formulas 
from the JGA. 

Using the JGA, we estimate that the longitudinal component of the pressure-gradient 
correlation, Ai7(r), has negative values somewhere between r= 1.. 1 and the inertial range. 
On the basis of the JGA and a specific model for D

11 
(r), Obukhov and Yaglom (1951) also 

obtained such negative values for spacings r = 1.3 ~ 1 to r = 2.5 ~ 1 • However, the exact 
A 11 ( r) might not have negative values. 
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